SHARE

Assembler University 206:
Powerful New z/Architecture Instructions
That Don't Require AMODE(64), Part 1

SHARE 117 in Orlando, Session 9312

Avri J. Adleman, IBM
adleman@us.ibm.com

(Presented by Dan Greiner, IBM)
Monday, 8 August 2011 — 4:30 p.m.

Topics B =

SHARE

» Extended displacements

— Many instructions allow for increased range of base register
» Reduced and enhanced memory access

— Load, Store, and Insert Immediate Instructions

— Boolean Immediate Instructions

— Halfword-register operations

— Reversed operand access
» Register comparison and testing

— Registers, storage, swap, sigh conversion
» Testing register operands Under Mask: register halfword-immediate
« Arithmetic instructions: 64-hit arithmetic, carry/borrow processing
» High-word instructions (“more registers’)

AJA-2

Terminology: all machine generations B =
i A

Byte 8 bits

Halfword 2 Bytes (16 Bits)

Word (Fullword) 4 Bytes (32 Bits)

Doubleword 8 Bytes (64 Bits)

Quadword 16 Bytes (128 Bits)

. Not ation: 64-bit based [32-bit based]
¢ 64-bit based (Doubleword)
* 32-bit based (Fullword)
« Positions:
¢ “High Order” refersto the low numbered bits
« “Low Order” refers to the high numbered bits

AJA-3

Extended displacements i

SHARE

» Traditional 12- bit displacements
— Maximum +4,095 bytes from origin (base address)
— Previoudly, al instructions that use base-displacement addressing
* Range limits supported by HLASM
— eg. USING (FROM TO),register list

» Extended 20-hit signed displacements
— 524,288 (512K) bytes from origin (base address)
» 8 additional bits appended to the left of 12 bit displacement
— Illustrated on next dlide
* HLASM range limits apply only to “short” displacements
— Some old, many new instructions support 20 bit displacements
« Initial Z/Architecture instructions that had reserved fields in instruction format
— Examples: LG, OG, ...
* New analogues for certain ESA/390 instructions
— Mnemonics suffixed with “Y”
— Examples: LY, MVIY, ...
» Consult Principles of Operation; most are very easy to use

AJA-4

Extended displacement: operation -1

» Signed 20-bit value : .
_ /| 12 Bits 8 Bits |
— Internal image
— Effective value
« Assembler resolution: [sreits | 128t |
— Priority isto the smallest TeSTs aveE B
positive displacement ST S
”Traditional 7 0B NG + 14, 10

LA 11,0(, 11)
. LR 10, 11
(Base Register R10) \AHI 10, 4096
LAY 2, FARX
LAY 3, PROGRAM (neg. offset!)
PR ,
Ext ended 4096

FARX DbC CL4" XYZA'
END

AJA-5

Register layout and notation for r“""f
register-immediate instructions |

SHARE

Bit l01 Bi (18 Bit 16 Bit 24 Bit, 312

| | }
| 32-bit Register I——o Byt e, IByte1 Byt e, IByte3

Not es: Hi gh (H Low (L)
1 - Sign Bit

2 — Last Bit

Bit 0! Bit 8 Bit 16 Bit 24 Bit 32[0] Bit 40[8] Bit 48[16] Bit 56[24] Bit 63[31]2

| | | |

Byt eq IByte1 Byt e, IByt e; Byte, IByte5 Byt eg IByt ey

Hi gh High (HH) Hi gh Low (HL) Low High (LH Low Low (LL)

H gh Ful lword (HF) Low Ful lword (LF)

| 64-bit Register '

AJA-6

Instruction mnemonic usage

Mnemonic | Name Instruction Additional Remarks
Examples

LL??7?2? Load Logical LLGT, LLGC, LLGH, ... Loads specific bytes of aregister, fills remainder
with zeroes.

?2?G?? 64-hit (“Grande”) Register LGR, AG,LTGR, ... Appliesto full 64-Bit register as target or target and
source; may widen value with or without sign
propagation.

??F?? Fullword LGF, LGFR, ALGF, ... Appliesto 32-bit word as source; value is widened

(“traditional 32-bit register”) when target is a 64-bit register.

?2?T?? Thirty-One Bit LLGTR, LLGT Appliesto source as the lower 31 bits: bit 33[1] to bit
63[31]

?2?H?? Halfword (2 bytes) LGH, AGH, ... Appliesto ahalfword (apair of specified bytes) of a
64 bit register.

?2?7H?? High word of a 64-bit register LMH, STMH Appliesto the high word, bits 0 to 31, of a 64 bit
register

?2??7LL, Low-Low TMLL, LLIHH, ... Specfied halfwords of a 64-bit register, or low and

???7?LH, Low-High high halves of a64-bit register

??77HL, High-Low

??777Hd High-High

1122?27 Insert-Immediate ILL, HILH, ... Load specific bytes of aregister, |leaving remainder

aone.

Store/Load (Multiple) high halves of -y
registers

SHARE

» Store/Load High Half of “Grande’ Registers
— Only high word' s 32 hits saved
» Format RSY (extended displacement)
—STVH R, R;, D,(B,) [EB[R/R, B, DL,..| DH, |26 |
—LMH Ry, Ry, D,(B,) [E[RIRB oL [0 [96 |
» Analogousto STM and LM
— Acts on range of registers

» Use multiple-typeinstruction with R; = R,
» Also LOAD HIGH (LFH) and STORE HIGH (STFH) for

loading/storing single high register.

AJA-8

-
Store/Load 64-bit registers e

SHARE

e STGandLG
— Store and Load single 64-bit register
— Analogousto ST (STY) and L (LY)
— Format RXY':
+ STG Ry, D,(X,, B,) |E3\R1§x2 |32 DL2| DH, | 24 |
* LG Ry, D(X; By)
e STMGandLMG
— Store and Load multiple 64-bit registers
— Analogousto STM (STMY) and LM (LMY)
— Format RSY':
* STMG Ry, Ry, Dy(B,) [E8[R, R, [B, DL,..| DR, | 24 |
* LMG R, Ry, D(By) |EB\ R Ry ||32 DL2| DH, | 04 |

|E3\Fe1§x2 ||32 DL2| DH, | 04 |

AJA-9

il

Y

SHARE

Load Multiple Disjoint

i LND Rl’ R3, D2(Bz) y D4(B4) * Exanpl e of LMD
- Formet SS: [EF[R &[5 0, 5] 0] et
— Loadsrange of full 64-bit registers

— Usestwo different locations o
* High half registers|oaded from Arg, HREGS DS 4F Save Hgh Half
* Low half registers loaded from Arg, LOAREGS DS 4F Save Low Half

LMD R2, R5, HI REGS, LOWREGS

» Equivaent to doingaLMH and LM in one instruction!

* Allows AMODE=64 code to load saved “ Grande” registers from
two different save areas (high and low words)

— Preventsregister corruption on needed addresses
* Notes:
— For performance, use sparingly:
e UseLMH and LM or LMG if possible
— Thereisno “ Store Multiple Digoint”

AJA-10

Load and Store Pair to/from Quadword i

SHARE

» Load Register Pair from Storage
- LPQ Ry, D,(X,, B,) [RXY-Format]
— R, represents an even/odd 64-bit register pair
— D,(X,,B,) addresses 16 bytes of storage
e Must be aligned on a quadword boundary.
— Process similar to:
* LG R, D,(X,B,) and LG R;+1, D,+8(X,,B,)
» Store Register Pair into Storage
- STPQ Ry, D,(X,, B,) [RXY-Format]
— R, represents an even/odd 64-bit register pair
— D,(X,,B,) addresses 16 bytes of storage
» Must be aligned on a quadword boundary.
— Process similar to:
» STG Ry, D,(X,,B,) and STG R;+1, D,+8(X,,B,)

AJA-11

Data-reversing instructions B =

* Load and Store Reversed

— Destination bytes are set in reverse order of the source
* Source bytes from left to right set destination bytes right to left

— Both source and destination use the same number of bytes
* Possibly only the low order bytes in a destination register may be used
» No sign bit propagation
 Unused bytes in destination register are untouched
— The bit order in the bytes remains unchanged
» Load Reversed instructions
— Register to Register: LRVR, LRVGR
— Storageto Register: LRVH, LRV, LRVG
e Store Reversed ingtructions: STRVH, STRV, STRVG
— Register-to-storage form only AAL2

Reverse instructions: examples

st e

* c(R2) = X ABCDEF12'

LRVR R3,R2 Regi ster to Register Reverse
* c(R3) = X 12EFCDAB'
* c(R4) = X 01020304' (BEFORE)

LRVH R4, HALFWORD Storage to Register Reverse
* c(R4) = X 0102D2Cl' (AFTER)
HALFWORD DC XL2' C1D2'
* c(GB) = X 0011223344556677"

STRVG Gb, DBLWORD Regi ster to Storage Reverse
* c(DBLWORD) = XL8' 7766554433221100"
DBLWORD DS D

AJA-13

Register comparison and testing

» Register Comparison with possible widening
— Register to Register (Similar to CR and CLR)
+ CGR, CGFR, CLGR, CLGFR

— Register to Storage (Similar to C and CL)

e CY,CG, CGF,CLY, CLG, CLGF
— Compare and Swap (Similar to CS and CDS)
* CSY, CDSY, CSG, CDSG
— Compare Logical Characters (Similar to CLM)
¢ CLMY,CLMH
» Register Testing with possible widening
— Load and Test (Similar to LTR)
¢ LTGR,LTGFR
* Register Sign Conversion with possible widening
— Load Complement (Similar to LCR)
+ LCGR, LCGFR
— Load Positive (Similar to LPR)
s LPGR, LPGFR
— Load Negative (Similar to LNR)
+ LNGR, LNGFR

For “Compare Logical
Grande with Fullword,”
widening iswith zeroes

All other “ Grande with
Fullword” compare
and/or test, widening is
with sign extension

AJA-14

1 est Under Mask tor —
register operands

o Test hit settingsin registers
— Similar to the TM instruction
— Except:
 Test bitsin aregister (R,) directly, not storage
» Mask field maps a halfword (1), not a byte
» Condition code for mixed!! (Different from TM!)
— Left most bit tested iszero setsCC = 1
— Left most bit tested is one sets CC = 2
» Each instruction acts on a specific halfword
— Four different instructions | HNdl| Had, | H"’d3‘ Had, |
s TMHH R, I,
— Test Under Mask High High (bits 0 to 15)
« TMHL R, I,
— Test Under Mask High Low (bits 16 to 31)
*« TMH R, I,0or TWH R, |,
— Test Under Mask Low High (bits 32[0] to 47[15])
« TM.L R,l,or TM. R, I,
— Test Under Mask Low Low (bits 48[16] to 63[31])

AJA-15

Test Under Mask In =
registers: examples

* Exanpl e #1:

TMHHRL, X' 8000

JO BRANCH
* Rl = X F0O00000000000 will branch
* RL = X 7000000000000 wi Il not branch
* Exanpl e #2:

TMLHRL, X' FOOO'

BRC 8, ONES CC =0 (JO

BRC 4, M XEDL cC =1

BRC 2, M XED2 cC =2

BRC 1, ZERCES CC = 3 (J2)
* RL = X 00000000F0000000' will branch to ONES
* Rl = X 0000000070000000" will branch to M XED1L
* R1 = X' 0000000080000000' wi Il branch to M XED2
* Rl = X 0000000000000000' will branch to ZERCES

* Exanpl e #3: (Set the Condition Code to 2)
LCGH R1, 2
TMLLR1, X 0003° Leftnost tested bit =1

AJA-16

Fullword register- 5
Immediate instructions (1)

* Similar to Halfword |mmediate I nstructions

— 64 hit registers considered as two fullwords
* XxHF (high): BitsOto 31 H gh Ful lword | Low Ful | word
* XXLF (low): Bits 32to 63 .
» Usethem to eliminate literals (and s(forage refereﬁ(l:e%)
— | I xF —Insert Fullword Immediate High or Low
* Places fullword into high or low fullword of register
» Remainder of register is unchanged
 Condition Code is unchanged
— LLxF —Load Logical Immediate High or Low
* Places fullword into high or low fullword of register
» Remainder of register isset to 0
« Condition Code is unchanged

63

AJA-17

Fullword register- = 5
Immediate Instructions (2) suare

e Load Immediate
— Sign bit extended (if necessary for 64-bit operation)
— Condition code remains unchanged
— LGFI (64 bits) and LFI (32 bits)
e Arithmetic Immediate
— Sign bit extended (if necessary for 64-bit operation)
— Condition code set arithmetically
— Arithmetic: AGFI and AFI
— Comparison: CGFl and CFl
¢ Logical Immediate
— No sign extension, zero filled (if necessary for 64-bit operation)
— Condition code set logically
— Arithmetic: ALGFI, ALFI, SLGFI and SLFI
— Comparison: CLGFI and CLFI

AJA-18

Load Logical instructions

e LoadLogica
— Loads specified part of a32 or 64 it target register
 Source comes from register, storage or immediate operand
— Remainder of the target register is zero filled, not sign extended!
* Instruction Types
— Byteto 64 bit register
* LLGC
— Halfword to 64 bit register
e LLGH, LLIHH, LLIHL, LLILH, LLILL
— Fullword to 64 hit register
e LLGFR, LLGF

Exanple: LLGC R1, =X FF'

Exanple: LLILH RL, X C1C2'

m-—>|oo\oo|oo\oo |00|00‘00|FF | R1—>|00|00‘00|00 |c1\c2|oo\oo |

Register-processing =
instructions

e Load and Test in asingleinstruction!
— Load register from storage
e LTG,LTandLTGF
— Load register from register
* LTGR,LTGFR
— Same as Load, except condition code is set
* 0—Resultiszero
* 1—Resultislessthan zero
* 2—Result is greater than zero
* 3-Unused
* Fullword-Immediate instructions
— Six-byteinstructions
— Four-byte immediate operand
— Similar to Halfword-Immediate

SHARE

AJA-20

Handy Dandy LLGT and =3
LLGTR suane

* Load Logical “Grande” Thirty One Bits
— LLGT Ry, D,(X,, B,)
» RXY Format: |E3\Fe1§x2 ||32 DL2| DH, | 17 |
—~LLGTR R, R,
« RRE Format: [B9[17[// [R R, |
» Source (Register or Storage)
- Fullword, 32bits (Argy) . [FF[Fe[FE[FF |
» Target Register (R,)
— Doubleword, 64 bi
» High word set to all zeroes

 Low order word copied from source
» Low order word's high bit 32[0] setto O

|oo|oo‘oo|oo |7F‘FF|FF‘FF |

AJA-21

Operand-widening —
instructions (1)
* Properties

— Storage or low part of source register to full register
— No Condition Code set
From Character (unsigned byte) without sign extension
— Storage to register:
+ LLC R;,RX and LLGCR,,RX
— Register to Register:
* LLCRR,,R,andLLGCRR,R,
» From signed Byte, with sign extension
— LGBRR,,R, and LBRR,,R,
From halfword with sign extension
- LGHRR;,R,and LHRR,R,

AJA-22

Insert-Immediate = 3
Instructions

* Insert Immediate halfwords into aregister
—IIHH, IHL, IlLH and I1LL
— Places halfword into specified register position
— Remainder of register is unchanged
— Condition Code is unchanged

Regi ster Rl Before

RL— 00| FF|00 |FF | 00| FF |00 |FF |

Exanple: |IHL Rl, X ABCD Exanple: II1LH RL, X C1C2'

Rl—»|oo\FF|AB\CD |oo|FF\oo|FF | Rl—»|oo|FF\oo|FF |c1\c2|oo\FF |

AJA-23
Boolean-immediate 8
Instructions SN ARE
» Perform Boolean operation on selected register fullword component.
» Properties
— Only designated halfword or fullword of a“Grande” register is operated
on

— Condition code is set as with other boolean operations
 Instructions operating on fullwords
— And Immediate:
« NNHF R, |,
« NLF R, I,
— Exclusive OR Immediate:
« XIHF R, I,
« XILF R, I,
— OR Immediate:
« OHF R, 1,
« OLF R, I,

AJA-24

Boolean-immediate = 3
halfword operations

NIxx, Olxx (but no XIxx instructions for halfwords!)
—xx=HH,HL,LHor LL

Performs halfwor d boolean operation into specific
register location

Remainder of register is unchanged

Sets condition code based on the halfword result

Regi ster Rl Before

m__.| 00|FF|00|FF |OO|FF|OO|FF |

Exanple: O HL R1, X ABCD Exanple: N LH R1, X C1C2'

R1—>|00|FF\AB|FF |00\FF|00\FF | Rl——»|00\FF|00\FF |00|cz\00|FF |

AJA-25

ol TR TT T TN W

Instructions:
operand widening (2)

e Load full 32 or 64 bit register
— Source comes from register, storage or immediate operand
— Sign extension
— Widening: byte, halfword, or fullword to 64-bit register
 Instruction types
— Byteto 32- or 64-bit register
* LB, LGB
— Halfword to 64-bit register
e LGH, LCH

— Fullword to 64-bit register
* LG, LGFR

—

SHARE

Exanple: LGB R1, =X AQ' Exanple: LGF R1, =F 10'

Rl——»|FF\FF|FF\FF |FF|FF\FF|A0 | Rl__.|00\00|00\00 |00|00\00|0A |

AJA-26

04-bit arithmetic —
Instructions

« Full 64-hit signed addition and subtraction
— Analogous to 32-bit arithmetic
* AG,AGR, SG, SGR, ALG, ALGCR, SLG, SLGR
— Widening from halfword or word to doubleword
» Sign extension: AGF, AGFR, SGF, SGFR
» Zero extension: ALGF, ALGFR, SLGF, SLGFR
* Single-register Processing
— Reduces the need for even/odd register pairs
— Operand widening in certain cases with sign extension
* MSG, MSGF, MSGFR, MSGR
» DSG, DSGF, DSGFR, DSGR do require register pairs for quotient/remainder!
» Logical Arithmetic on even/odd pairs
— Allowsfor 64- or 128-hit unsigned product or quotient
— Unsigned values treated similarly as used with AL, ALR, etc. instructions
e ML, MLG, MLR, MLGR
* DL,DLG,DLGR, DLR (aso requireregister pairs!)

Note: Instruction(s) in Bold are for 32-bit register pairs only |

AJA-27

—

64-bit arithmetic: examples =%

SHARE

* Exanpl e #1:
AG- R1, =F 3' Not e: sanme as AG R1, =FD 3'
X' 0000000000000001"

* Before:
* X' 0000000000000004"

After:

RA

* Exanpl e #2:

MG R1, =F 3 Not e: same as MSG R1, =FD 3'
* Before: R1 = X 0000000000000002'
* After: R1 = X 0000000000000006'
* Exanpl e #3:
DSGF R2, =F' 3' Not e: same as DSG R2, =FD 3'
* Before: R =72
* Before: R3 = X 0000000000000005' (divi dend)
* After: R2 = X 0000000000000002" (renni nder)
* After: R3 = X 0000000000000001" (quotient)

AJA-28

I=vvlvv‘l el T TT T T\ LRI

instructions with Carry and =%
Borrow feature

* New Logica Arithmetic Instructions
— Performslogical addition or subtraction
« Similar to the “traditional” ALx and SLx type instructions
— Carry or borrow isindicated by the Condition Code
* Set by previouslogica arithmetic statement, as usual

« Continuesto propagate carry or borrow
— Intermediate instructions must not alter the CC!

* |Instructions use 32- or 64-hit registers
— Addition
« ALC,ALCR, ALCG, ALCGR

— Subtraction
e SLB, SLBR, SLBG, SLBGR

| Note: Instruction(s) in Bold are for 32-bit registers only |

AJA-29

=vvlvwl L4 ALEBLELELE B B = =1 I~ 4

F ”"

Instructions with Carry and ’l
Borrow Feature

» Allows easy addition or subtraction of large binary numbers
— No need to code branches around carry or borrow
 Condition codes 2 or 3 for add logical
« Condition code 1 for subtract logical
— No need to include special instructions for adding or
subtracting the carry or borrow
* Process
— Arithmetic proceedsright to left
— First instruction is the traditional logical addition or
subtraction
* Preserve the condition code!
— Remaining instructions are Add With Carry or Subtract With
Borrow
* Propagates the condition code for each successive operation

AJA-30

I=vvlv“l CATITCT ITT IO UUWTW

instructi ith C d =
B I y SHARE
* Ad Style * New Style
STCK CLOCK STCK CLOCK
LM R2, R3, CLOCK LM R2, R3, CLOCK
LM R4, R5, FACTOR LM R4, R5, FACTOR
SRDL R2, 12 SRDL R2, 12
* Addition * Addi tion
ALR R3, R5 Add Low ALR R3, R5 Add Low
BC 12,*+8 Carry ? ALCR R2, R4 Add H gh
AL R2, ONE Yes!!!
ALR R, R4 Add High
* Subtraction * Subtraction
SLR R3,R5 Subtract Low SLR R3,R5 Subtract Low
BC 3,*+8 Borrow? SLBR R2, R4 Subtract High
SL R2, ONE Yes!!!
SLR R2, R4 Subtract High
CLOCK DS D CLOCK DS D
FACTOR DC FD nnnnn' FACTOR DC ED nnnnn’
ONE DC F 1
AJA-31
" . : r "’g“
High-word instructions (z196)
SHARE
» High 32 bits of a 64-hit register » Examples:
16 more 32-bit registers! * AHHLR R, R, R
— Add/subtract (signed, logical, - R = Hgh-half for sum
immediate) - R, = High-half operand
— Comparison (signed, logical, - R, = Lowhalf operand
immediate) . !
— Possible use:

L oad/Store (byte, character, halfword,
word; register and memory)

Logical operations (AND, OR, XOR)
Logical shifts .
Branch Relative on Count

e Many instructions use high- and low-
half 32-bit operands

* Add/subtract can be non-destructive

e Accumulate subtotals in 32-bit
low-half of aregister

* Accumulate grand total in 32-bit
high-half of the register

BRCTH R, 1,

— Useit for loop countsto free up
low-half registers for addressing

AJA-32

=

High-word instructions: summary B =
it hl
e Mnemonicslook complex, but make < Register Logical load
sense after awhile — 32-bit: LHHR, LHLR LLHFR
* Add: AHHHR, AHHLR AIH — 16-bit; LLHHHR, LLHHLR,
— Logical: ALHHHR, ALHHLR LLHLHR
ALSIH ALSIHN () — 8bit: LLOHHR, LLCHLR,
 Subtract: SHHHR, SHHLR LLCLHR
— Logica: SLHHHR, SLHHLR * Logica operations XxxxX R, R,
e Compare. CHHR, CHLR, CIH — AND: NHHR, NHLR, NLHR
- Logical: CLHHR, CLHLR, - OR: OHHR, OHLR, QOLHR
GLIH — XOR: XHHR, XHLR XLHR
* Memory load: LBH, LHH, LFH - Logical Shifts xxxx Ry, R, 1, ()
— Logica: LLCH, LLHH — SLLHH, SLLLH, SRLHH,
+ Store: STCH, STHH, STFH SRLLH

e Load Immediate: LLI HF

AJA-33

